Modeling Nasal Physiology Changes Due to Septal Perforations

Author:

Cannon Daniel E.1,Frank Dennis O.2,Kimbell Julia S.2,Poetker David M.1,Rhee John S.1

Affiliation:

1. Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA

2. Department of Otolaryngology–Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA

Abstract

Objective To use computational fluid dynamics (CFD) technology to help providers understand (1) how septal perforations may alter nasal physiology and (2) how these alterations are influenced by perforation size and location. Study Design Computer simulation study. Setting Facial plastic and reconstructive surgery clinic. Subjects and Methods With the aid of medical imaging and modeling software, septal perforations of 1 and 2 cm in anterior, posterior, and superior locations were virtually created in a nasal cavity digital model. The CFD techniques were used to analyze airflow, nasal resistance, air conditioning, and wall shear stress. Results Bilateral nasal resistance was not significantly altered by a septal perforation. Airflow allocation changed, with more air flowing through the lower-resistance nasal cavity. This effect was greater for anterior and posterior perforations than for the superior location. At the perforation sites, there was less localized heat and moisture flux and wall shear stress in superior perforations compared with those in anterior or posterior locations. For anterior perforations, a larger size produced higher wall shear and velocity, whereas in posterior perforations, a smaller size produced higher wall shear and velocity. Conclusion Septal perforations may alter nasal physiology. In the subject studied, airflow allocation to each side was changed as air was shunted through the perforation to the lower-resistance nasal cavity. Anterior and posterior perforations caused larger effects than those in a superior location. Increasing the size of anterior perforations and decreasing the size of posterior perforations enhanced alterations in wall shear and velocity at the perforation.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3