Affiliation:
1. Department of Otolaryngology and Communication Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
2. Department of Otolaryngology–Head and Neck Surgery, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
Abstract
Objective To use computational fluid dynamics (CFD) technology to help providers understand (1) how septal perforations may alter nasal physiology and (2) how these alterations are influenced by perforation size and location. Study Design Computer simulation study. Setting Facial plastic and reconstructive surgery clinic. Subjects and Methods With the aid of medical imaging and modeling software, septal perforations of 1 and 2 cm in anterior, posterior, and superior locations were virtually created in a nasal cavity digital model. The CFD techniques were used to analyze airflow, nasal resistance, air conditioning, and wall shear stress. Results Bilateral nasal resistance was not significantly altered by a septal perforation. Airflow allocation changed, with more air flowing through the lower-resistance nasal cavity. This effect was greater for anterior and posterior perforations than for the superior location. At the perforation sites, there was less localized heat and moisture flux and wall shear stress in superior perforations compared with those in anterior or posterior locations. For anterior perforations, a larger size produced higher wall shear and velocity, whereas in posterior perforations, a smaller size produced higher wall shear and velocity. Conclusion Septal perforations may alter nasal physiology. In the subject studied, airflow allocation to each side was changed as air was shunted through the perforation to the lower-resistance nasal cavity. Anterior and posterior perforations caused larger effects than those in a superior location. Increasing the size of anterior perforations and decreasing the size of posterior perforations enhanced alterations in wall shear and velocity at the perforation.
Subject
Otorhinolaryngology,Surgery
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献