Impact of nasal septal perforation on the airflow and air-conditioning characteristics of the nasal cavity

Author:

Na Yang,Kwon Kyung Won,Jang Yong Ju

Abstract

AbstractWe investigated (1) how nasal septal perforations (NSPs) modify nasal airflow and air-conditioning characteristics and (2) how the modifications of nasal airflow are influenced by the size and location of the NSP. Computed tomography scans of 14 subjects with NSPs were used to generate nasal cavity models. Virtual repair of NSPs was conducted to examine the sole effect of NSPs on airflow. The computational fluid dynamics technique was used to assess geometric and airflow parameters around the NSPs and in the nasopharynx. The net crossover airflow rate, the increased wall shear stress (WSS) and the surface water–vapor flux on the posterior surface of the NSPs were not correlated with the size of the perforation. After the virtual closure of the NSPs, the levels in relative humidity (RH), air temperature (AT) and nasal resistance did not improve significantly both in the choanae and nasopharynx. A geometric parameter associated with turbinate volume, the surface area-to-volume ratio (SAVR), was shown to be an important factor in the determination of the RH and AT, even in the presence of NSPs. The levels of RH and AT in the choanae and nasopharynx were more influenced by SAVR than the size and location of the NSPs.

Funder

National Research Foundation of Korea

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3