Orally Inhaled Drug Particle Transport in Computerized Models of Laryngotracheal Stenosis

Author:

Frank-Ito Dennis Onyeka123,Cohen Seth Morris1

Affiliation:

1. Department of Head and Neck Surgery & Communication Sciences, Duke University Medical Center, Durham, North Carolina, USA

2. Computational Biology & Bioinformatics PhD Program, Duke University, Durham, North Carolina, USA

3. Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina, USA

Abstract

Objective Adjuvant management for laryngotracheal stenosis (LTS) may involve inhaled corticosteroids, but metered dose inhalers are designed for pulmonary drug delivery. Comprehensive analyses of drug particle deposition efficiency for orally inhaled corticosteroids in the stenosis of LTS subjects are lacking. Study Design Descriptive research. Setting Academic medical center. Methods Anatomically realistic 3-dimensional reconstructions of the upper airway were created from computed tomography images of 4 LTS subjects—2 subglottic stenosis and 2 tracheal stenosis subjects. Computational fluid dynamics modeling was used to simulate airflow and drug particle transport in each airway. Three inhalation pressures were simulated, 10 Pa, 25 Pa, and 40 Pa. Drug particle transport was simulated for 100 to 950 nanoparticles and 1 to 50 micron-particles. Particles were released into the airway to mimic varying inhaler conditions with and without a spacer chamber. Results Based on smallest to largest cross-sectional area ratio, the laryngotracheal stenotic segment shrunk by 57% and 47%, respectively, for subglottic stenosis models and by 53% for both tracheal stenosis models. Airflow resistance at the stenotic segment was lower in subglottic stenosis models than in tracheal stenosis models: 0.001 to 0.011 Pa.s/mL vs 0.024 to 0.082 Pa.s/mL. Drug depositions for micron-particles and nanoparticles at stenosis were 0.06% to 2.48% and 0.10% to 2.60% for subglottic stenosis and tracheal stenosis models, respectively. Particle sizes with highest stenotic deposition were 6 to 20 µm for subglottic stenosis models and 1 to 10 µm for tracheal stenosis models. Conclusion This study suggests that at most, 2.60% of inhaled drug particles deposit at the stenosis. Particle size ranges with highest stenotic deposition may not represent typical sizes emitted by inhalers.

Funder

national institute of dental and craniofacial research

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3