Effect of cartilaginous rings in tracheal flow with stenosis

Author:

Bocanegra Evans Humberto,Segnini Jose Montoya,Doosttalab AliORCID,Cordero Joehassin,Castillo Luciano

Abstract

AbstractBackgroundIn respiratory fluid dynamics research, it is typically assumed that the wall of the trachea is smooth. However, the trachea is structurally supported by a series of cartilaginous rings that create undulations on the wall surface, which introduce perturbations into the flow. Even though many studies use realistic Computer Tomography (CT) scan data to capture the complex geometry of the respiratory system, its limited spatial resolution does not resolve small features, including those introduced by the cartilaginous rings.ResultsHere we present an experimental comparison of two simplified trachea models with Grade II stenosis (70% blockage), one with smooth walls and second with cartilaginous rings. The use a unique refractive index-matching method provides unprecedented optical access and allowed us to perform non-intrusive velocity field measurements close to the wall (e.g., Particle Image Velocimetry (PIV)). Measurements were performed in a flow regime comparable to a resting breathing state (Reynolds number ReD = 3350). The cartilaginous rings induce velocity fluctuations in the downstream flow, enhancing the near-wall transport of momentum flux and thus reducing flow separation in the downstream flow. The maximum upstream velocity in the recirculation region is reduced by 38%, resulting in a much weaker recirculation zone— a direct consequence of the cartilaginous rings.ConclusionsThese results highlight the importance of the cartilaginous rings in respiratory flow studies and the mechanism to reduce flow separation in trachea stenosis.

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3