Flexural Properties of Native and Tissue-Engineered Human Septal Cartilage

Author:

Caffrey Jason P.1,Kushnaryov Anton M.23,Reuther Marsha S.23,Wong Van W.14,Briggs Kristen K.14,Masuda Koichi5,Sah Robert L.16,Watson Deborah23

Affiliation:

1. Department of Bioengineering, University of California, San Diego, La Jolla, California, USA

2. Head and Neck Surgery Section, VA San Diego Healthcare System, San Diego, California, USA

3. Division of Otolaryngology–Head and Neck Surgery, University of California, San Diego, La Jolla, California, USA

4. Research Services, VA San Diego Healthcare System, San Diego, California, USA

5. Department of Orthopedic Surgery, University of California, San Diego, La Jolla, California, USA

6. Institute of Engineering in Medicine, University of California, San Diego, La Jolla, California, USA

Abstract

Objective To determine and compare the bending moduli of native and engineered human septal cartilage. Study Design Prospective, basic science. Setting Research laboratory. Subjects and Methods Neocartilage constructs were fabricated from expanded human septal chondrocytes cultured in differentiation medium for 10 weeks. Constructs (n = 10) and native septal cartilage (n = 5) were tested in a 3-point bending apparatus, and the bending moduli were calculated using Euler-Bernoulli beam theory. Results All samples were tested successfully and returned to their initial shape after unloading. The bending modulus of engineered constructs (0.32 ± 0.25 MPa, mean ± SD) was 16% of that of native septal cartilage (1.97 ± 1.25 MPa). Conclusion Human septal constructs, fabricated from cultured human septal chondrocytes, are more compliant in bending than native human septal tissue. The bending modulus of engineered septal cartilage can be measured, and this modulus provides a useful measure of construct rigidity while undergoing maturation relative to native tissue.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3