Machine Learning Diagnosis of Peritonsillar Abscess

Author:

Wilson Michael B.1,Ali S. Ahmed1,Kovatch Kevin J.1,Smith Josh D.1,Hoff Paul T.1

Affiliation:

1. Department of Otolaryngology–Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA

Abstract

Peritonsillar abscess (PTA) is a difficult diagnosis to make clinically, with clinical examination of even otolaryngologists showing poor sensitivity and specificity. Machine learning is a form of artificial intelligence that “learns” from data to make predictions. We developed a machine learning classifier to predict the diagnosis of PTA based on patient symptoms. We retrospectively collected clinical data and symptomatology from 916 patients who underwent attempted needle aspiration for PTA. Machine learning classifiers were trained on a subset of the data to predict the presence or absence of purulence on attempted aspiration. The performance of the model was evaluated on a holdout set. The accuracy of the top-performing algorithm, the artificial neural network, was 72.3%. Artificial neural networks can use patient symptoms to exceed human ability to predict PTA in patients with clinical suspicion for PTA. Similar models can assist medical decision making for clinicians who have suspicion of PTA.

Publisher

SAGE Publications

Subject

Otorhinolaryngology,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3