Deep Learning Artificial Intelligence to Predict the Need for Tracheostomy in Patients of Deep Neck Infection Based on Clinical and Computed Tomography Findings—Preliminary Data and a Pilot Study

Author:

Chen Shih-LungORCID,Chin Shy-Chyi,Ho Chia-YingORCID

Abstract

Background: Deep neck infection (DNI) can lead to airway obstruction. Rather than intubation, some patients need tracheostomy to secure the airway. However, no study has used deep learning (DL) artificial intelligence (AI) to predict the need for tracheostomy in DNI patients. Thus, the purpose of this study was to develop a DL framework to predict the need for tracheostomy in DNI patients. Methods: 392 patients with DNI were enrolled in this study between August 2016 and April 2022; 80% of the patients (n = 317) were randomly assigned to a training group for model validation, and the remaining 20% (n = 75) were assigned to the test group to determine model accuracy. The k-nearest neighbor method was applied to analyze the clinical and computed tomography (CT) data of the patients. The predictions of the model with regard to the need for tracheostomy were compared with actual decisions made by clinical experts. Results: No significant differences were observed in clinical or CT parameters between the training group and test groups. The DL model yielded a prediction accuracy of 78.66% (59/75 cases). The sensitivity and specificity values were 62.50% and 80.60%, respectively. Conclusions: We demonstrated a DL framework to predict the need for tracheostomy in DNI patients based on clinical and CT data. The model has potential for clinical application; in particular, it may assist less experienced clinicians to determine whether tracheostomy is necessary in cases of DNI.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3