How to Deal with Missing Categorical Data: Test of a Simple Bayesian Method

Author:

Chen Gongyue1,Åstebro Thomas2

Affiliation:

1. University of Waterloo

2. University of Toronto

Abstract

The authors analyze the efficiency of six missing data techniques for categorical item nonresponse under the assumption that data are missing at random or missing completely at random. By efficiency, the authors mean a procedure that produces an unbiased estimate of true sample properties that is also easy to implement. The investigated techniques include listwise deletion, mode substitution, random imputation, two regression imputations, and a Bayesian model-based procedure. The authors analyze efficiency under six experimental conditions for a survey-based data set. They find that listwise deletion is efficient for the data analyzed. If data loss due to listwise deletion is an issue, the analysis points to the Bayesian method. Regression imputation is also efficient, but the result is conditioned on the specific data structure and may not hold in general. Additional problems arise when using regression imputation, making it less appropriate.

Publisher

SAGE Publications

Subject

Management of Technology and Innovation,Strategy and Management,General Decision Sciences

Reference19 articles.

1. Åstebro T. & Bernhardt, I. (in press). Start-up financing, owner characteristics and survival. Journal of Business and Economics.

2. A comparison of inclusive and restrictive strategies in modern missing data procedures.

3. Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood estimation from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 39(Series B), 1-38.

4. A Primer on Maximum Likelihood Algorithms Available for Use With Missing Data

5. The impact of nonnormality on full information maximum-likelihood estimation for structural equation models with missing data.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3