Improvement of grey wolf optimizer with adaptive middle filter to adjust support vector machine parameters to predict diabetes complications

Author:

Jeyafzam Fereshteh,Vaziri Babak,Suraki Mohsen Yaghoubi,Hosseinabadi Ali Asghar Rahmani,Slowik AdamORCID

Abstract

AbstractIn medical science, collecting and classifying data from various diseases is a vital task. The confused and large amounts of data are problems that prevent us from achieving acceptable results. One of the major problems for diabetic patients is a failure to properly diagnose the disease. As a result of this mistake in diagnosis or failure in early diagnosis, the patient may suffer from complications such as blindness, kidney failure, and cutting off the toes. Nowadays, doctors diagnose the disease by relying on their experience and knowledge and performing complex and time-consuming tests. One of the problems with current diabetic, diagnostic methods is the lack of appropriate features to diagnose the disease and consequently the weakness in its diagnosis, especially in its early stages. Since diabetes diagnosis relies on large amounts of data with many parameters, it is necessary to use machine learning methods such as support vector machine (SVM) to predict the complications of diabetes. One of the disadvantages of SVM is its parameter adjustment, which can be accomplished using metaheuristic algorithms such as particle swarm optimization algorithm (PSO), genetic algorithm, or grey wolf optimizer (GWO). In this paper, after preprocessing and preparing the dataset for data mining, we use SVM to predict complications of diabetes based on selected parameters of a patient acquired by laboratory test using improved GWO. We improve the selection process of GWO by employing dynamic adaptive middle filter, a nonlinear filter that assigns appropriate weight to each value based on the data value. Comparison of the final results of the proposed algorithm with classification methods such as a multilayer perceptron neural network, decision tree, simple Bayes, and temporal fuzzy min–max neural network (TFMM-PSO) shows the superiority of the proposed method over the comparable ones.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3