Mechanical characterization of polylactic acid reinforced bagasse/basalt hybrid fiber composites

Author:

King Francis L1ORCID,Arul Jeya Kumar A2,Vijayaragahavan Srinivasan1

Affiliation:

1. Manufacturing Department, Annamalai University, India

2. Mechanical Department, Jaya College of Engineering and Technology, India

Abstract

This paper focuses on the mechanical behavior of Polylatic acid reinforced Basalt and Bagasse fibers. The most important aspect in formulating this hybrid composite with better mechanical properties is the optimization of interfacial bonding between the reinforcing bagasse fiber and basalt fiber and polymer matrix. The composite of different weight proportion of the materials is compounded using twin screw extruder. The specimens were prepared by injection molding and subjected to various mechanical testing under tensile, flexural, and impact loads. It was found that 84 wt% of polylactic acid, 12 wt% of Basalt fiber and 4 wt% of Bagasse fiber composite exhibits better mechanical properties compared to other composites taken for study in this research. The better tensile, flexural, and impact strength of 52.8 MPa, 82.2 MPa, and 3.39 KJ/m2 were observed. The results show that the fiber content in weight percentage is playing a major than the fiber length on the improvement of tensile, flexural, and impact properties. The mechanical behavior obtained through experiments witnessed that Bagasse/Basalt fiber reinforcement in polylactic acid composites can be used as medium-load applications because of its low cost and ease of decomposability. The scanning electron microscope photography of the tested specimens shows better interfacial bonding between matrix and fibers. Also, the water absorption test indicates increase in fiber content increases the water absorption rate, reveals good degradation property of the composite. Additionally, the use of Bagasse fiber promotes the degradation of the material after its life time.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3