Effect of Stacking Sequence on Mechanical Properties of Bamboo/Bagasse Composite Fiber for Automobile Seat Cushions and Upholstery Application

Author:

Natrayan L.1,Ashok S. K.2,Kaliappan Seeniappan3,Kumar Pankaj4

Affiliation:

1. Saveetha School of Engineering, SIMATS, Department of Mechan

2. Dr. Mahalingam College of Engineering and Technology, Depart

3. KCG College of Technology, Department of Mechatronics Engine

4. SR University, Department of Mechanical Engineering

Abstract

<div class="section abstract"><div class="htmlview paragraph">Researchers have chosen to study natural fibers instead of synthetic fibers since low-cost and ecologically favorable materials are required. The present research concentrates on the mechanical characteristics of epoxy composites reinforced with bamboo and bagasse fibers. The hybrids were created using four different ratios of bamboo/bagasse fibers, then hand-laid up. The material characteristics of the generated composites, including tension, bending, impacts, and Shore D hardness measurements, were assessed. The scanning electron microscopy technique was used to study morphology. Three levels of bamboo and a core network of bamboo fibers in composites were assumed to generate superior qualities. The core layer of bamboo and an outer layer typically characterized by sugarcane composites have enhanced flexural strength and Shore D toughness because of the bamboo layer at the center. The results of the microstructural investigations showed no pores or cracks, which improved the bending and toughness properties.</div></div>

Publisher

SAE International

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance Evaluation of Simulation-Driven Metaheuristic Algorithms;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

2. Optimizing Optical Fiber Path in Wavelength Division Multiplexing Networks Using Particle Swarm Optimization;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

3. Meta-Heuristic Optimization for Enhanced Sensor-Based Health Monitoring in Cloud Computing Environments;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

4. Experimental Investigation and Comparative Analysis of an Efficient Machine Learning Algorithm for Distribution System Reconfiguration;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-30

5. Enhancing Photovoltaic System Performance Using PSO for Maximum Power Point Tracking and DC-Bus Voltage Regulation in Grid-Connected PV Systems;Advances in Systems Analysis, Software Engineering, and High Performance Computing;2024-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3