Synthesis of the in situ aluminum matrix composite through pyrolysis of high temperature vulcanization silicone

Author:

Senemar Mohammad1,Niroumand Behzad1,Maleki Ali2,Rohatgi Pradeep K3

Affiliation:

1. Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran

2. Research Institute for Steel, Isfahan University of Technology, Isfahan, Iran

3. Department of Materials Science and Engineering, University of Wisconsin-Milwaukee, USA

Abstract

In this study, in situ aluminum matrix composites were synthesized through pyrolysis of high temperature vulcanization silicone in commercially pure aluminum melt. For this purpose, 1 to 4 wt% of high temperature vulcanization silicone was added to a vortex of molten aluminum at 750℃ and the resulting slurries were cast in steel dies. Microstructure, hardness, and tensile properties of the as-cast samples were examined at ambient and high temperatures. The results revealed the in situ formation and distribution of reinforcement particles in the matrix. Energy-dispersive X-ray analysis indicated that the formed reinforcement particles consisted of O and Si elements. This confirms the in situ reinforcement formation by pyrolysis of high temperature vulcanization silicone in the melt. The size of the in situ formed particles was mostly in the range of 200–2000 nm. It was shown that the composites synthesized by the addition of 4 wt% high temperature vulcanization had the highest mechanical properties both at ambient and high temperatures. Room temperature hardness, tensile strength, and yield strength of this sample were increased by about 50%, 23%, and 19% compared to the monolithic sample, respectively.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3