Analysis of Local Delaminations Caused by Angle Ply Matrix Cracks

Author:

Salpekar Satish A.1,O'Brien T. Kevin2,Shivakumar K. N.3

Affiliation:

1. Analytical Services & Materials Inc., 107 Research Drive, Hampton, VA 23666

2. US. Army Research Laboratory, Vehicle Structures Directorate, NASA Langley Research Center, Mail Code 188E, Hampton, VA 23681-0001

3. Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, NC 27410

Abstract

Two different families of graphite/epoxy laminates with similar layups but different stacking sequences, (0θ/-θ)sand (-θ/θ/0)s, laminates, were analyzed using three-dimensional finite element analysis for 0 = 15 and 30 degrees. Delaminations were modeled in the -θ/θ interface, bounded by a matrix crack and the stress free edge. The total strain energy release rate, G, along the delamination front was computed using three different techniques: the virtual crack closure technique (VCCI), the equivalent domain integral (EDI) technique, and a global energy balance technique. The opening fracture mode component of the strain energy release rate, G1, along the delamination front was also computed for various delamination lengths using VCCT. Although the finite element model did not have an orthogonal mesh, VCCT still yielded accurate results which were in agreement with the global energy balance and yielded similar G distributions across the delamination front as the EDI technique. For both layups analyzed, the matrix crack length influenced the magnitude of G for delamination. Furthermore, the opening mode, G., was greatest near the matrix crack and decreased near the free edge. The laminate stacking sequences with a matrix crack in the surface angle ply had a greater GIvalue than the laminate stacking sequences with an angle ply matrix crack in the interior of the specimen thickness. This is consistent with test results in the literature that show delamination occurs earlier in the fatigue life of laminates with matrix cracks in the surface plies than in the interior plies.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3