Experimental and numerical determination of mode II fracture toughness of woven composites verified through unidirectional composite test data

Author:

Healey Rowan1,Chowdhury Nabil M1,Chiu Wing Kong1,Wang John2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia

2. Aerospace Division, Defence Science and Technology Group, Victoria, Australia

Abstract

Due to the increase in prevalence of fibre-reinforced polymer matrix composites (FRPMC) in aircraft structures, the need for adaption of failure prediction tools such as fatigue spectra has become more pertinent. Fracture toughness is an important measure with regard to fatigue, while adequate techniques and an ASTM standard for unidirectional FRPMC exist, there are mixed opinions when investigating woven FRPMC. This study describes a three-dimensional finite element model developed to assist in determining the mode II interlaminar fracture toughness ( GIIc) of fibre-reinforced woven composites, validated by an experimental and numerical comparison of GIIc determination for unidirectional FRPMC. Experimental testing mirroring the ASTM D7905 resulted in a measure of 1176 J m−2for the unidirectional specimen, while comparisons made with the literature achieved an average value of 1459.24 J m−2or the woven specimen. Three numerical methods were employed due to their prominence in the literature: displacement field, virtual crack closure techniques and the J integral. Both the J integral and the displacement field three-dimensional models produced satisfactory unidirectional GIIc estimates of 1284 and 1116.8 J m−2, respectively. Displacement field had a 5% uncertainty in GIIc when compared with experimental results, while J integral had an approximately 8.5% uncertainty. Extending the analysis to the woven specimens, values of 1302.8 and 1465.3 J m−2were obtained from J integral and displacement field methods, respectively, both within 10% of the experimental values. Hence, numerically determined unidirectional GIIc values were verified with experimental results, leading to the successful employment and extension to woven composites which displayed similar agreement.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3