Synthesis and microwave absorption enhancement of BaTiO3 nanoparticle/polyvinylbutyral composites

Author:

Akinay Yüksel1ORCID,Hayat Fatih1

Affiliation:

1. Faculty of Engineering, Metallurgical and Materials Engineering, Karabuk University, Turkey

Abstract

Barium titanate (BaTiO3)-polyvinyl butyral (PVB) composites at various weight concentrations were prepared via ultrasonic probe sonicator. The sonication was carried out at 20 kHz and 70% amplitude for about 2 h and BaTiO3 nanoparticles were dispersed well in the mixture of PVB/ethanol under probe sonication. As a microwave absorbent, the microwave absorbing properties of the BaTiO3 nanoparticle-PVB composites with different mixture ratios of 5 wt.% (RAM1), 10 wt.% (RAM2) and 15 wt.% (RAM3) BaTiO3 were investigated based on transmission line theory in the frequency range from 1 GHz to 14 GHz. The minimum reflection loss (RL) of the RAM1 reaches −3.47 dB at 5.57 GHz with a matching thickness of only 7.0 mm. For RAM2 with 4 mm and 4.2 mm thickness ( tm), the RL values are less than −10 dB obtained in the frequency 10.3–13.4 GHz. The RAM3 composite with 15 wt.% BaTiO3 mixture ratio shows a minimum reflection loss of −43.8 dB at 11.01 GHz with a −15 dB bandwidth over the extended frequency range of 10.2–13.2 GHz for a thickness of 2.8 mm and −44.2 dB at 4.77 GHz for a thickness of 6.5 mm.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3