Affiliation:
1. Faculty of Engineering, Metallurgical and Materials Engineering, Karabuk University, Turkey
Abstract
Barium titanate (BaTiO3)-polyvinyl butyral (PVB) composites at various weight concentrations were prepared via ultrasonic probe sonicator. The sonication was carried out at 20 kHz and 70% amplitude for about 2 h and BaTiO3 nanoparticles were dispersed well in the mixture of PVB/ethanol under probe sonication. As a microwave absorbent, the microwave absorbing properties of the BaTiO3 nanoparticle-PVB composites with different mixture ratios of 5 wt.% (RAM1), 10 wt.% (RAM2) and 15 wt.% (RAM3) BaTiO3 were investigated based on transmission line theory in the frequency range from 1 GHz to 14 GHz. The minimum reflection loss (RL) of the RAM1 reaches −3.47 dB at 5.57 GHz with a matching thickness of only 7.0 mm. For RAM2 with 4 mm and 4.2 mm thickness ( tm), the RL values are less than −10 dB obtained in the frequency 10.3–13.4 GHz. The RAM3 composite with 15 wt.% BaTiO3 mixture ratio shows a minimum reflection loss of −43.8 dB at 11.01 GHz with a −15 dB bandwidth over the extended frequency range of 10.2–13.2 GHz for a thickness of 2.8 mm and −44.2 dB at 4.77 GHz for a thickness of 6.5 mm.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献