Computational evaluation of absorption characteristics of ceramic-based auxetic materials in X-band frequency range

Author:

Phanendra Kumar AORCID,Nakka Rajesh,Harursampath Dineshkumar,A Ponnusami SathiskumarORCID

Abstract

Abstract This research study investigates the absorption capabilities of ceramic-based auxetic metamaterials within the X-band frequency range, emphasising their potential application in stealth technology. Four distinct auxetic topologies have been chosen for this purpose: star, re-entrant, anti-tetrachiral, and missing-rib/cross-chiral while maintaining an equal cross-sectional area for comparison analysis. A computationally efficient homogenisation scheme based on the variational asymptotic method is used to evaluate the effective properties of these auxetics. The absorption spectra are then obtained by evaluating scattering matrices using these effective properties. The influence of auxetics out-of-plane thickness, incidence and polarisation angles on the proposed ceramic absorber’s absorption spectra is evaluated. One of the interesting observations is the identical absorption capabilities of star and missing-rib/cross-chiral geometries despite their distinct architectures. The star and missing-rib/cross-chiral based absorbers achieved a maximum absorption of 99.99% or a minimum reflection loss (RL) of −40 dB with a thickness of 3.50 mm. The RL is less than −10 dB (the standard for an electromagnetic (EM) absorber) for all incidence angles less than 70. The findings of this study hold significant potential for the advancement of ceramic-based auxetic metamaterials in EM absorption applications within the aerospace industry.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,Atomic and Molecular Physics, and Optics,Civil and Structural Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fatigue response of auxetic structures: A review;Fatigue & Fracture of Engineering Materials & Structures;2024-05-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3