Affiliation:
1. Mechanical Engineering Department, École de Technologie Supérieure (ÈTS), Montreal, Canada
2. Mechanical Engineering Department, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, Canada
3. McGill University, Montreal, Canada
Abstract
Using natural fibers as reinforcement in polymer matrix composites necessitates evaluating the latter under different modes of solicitation. This allows extracting its material properties for engineering design and research purposes. The main objective of the study is preparing a consistent set of material properties for unidirectional flax fiber-reinforced epoxy composite with defined composition and basic configuration. These data are prerequisites for growing researches on flax fiber-reinforced epoxy composites, especially for numerical analysis purposes using the finite element method. In this work, partially green unidirectional-flax fiber-reinforced epoxy composites are tested for physical and mechanical properties and studied for their failure modes. Tension, compression, flexion, and shear properties, as well as physical properties like density, specific heat capacity and thermal diffusivity, are evaluated according to ASTM standard test methods. Flax fibers, which are composites by themselves, come in bundles in the composites and demonstrate a complex behavior. Therefore, a fractographic analysis has been conducted to understand the macro and microscale failure mechanisms to correlate them with the material properties. The results are in good agreement with those of the literature, when available, but they mainly show the specific behavior of unidirectional-flax composites subject to different solicitation modes, especially compression and direct shear modes evaluated this way for the first time for unidirectional-flax fiber-reinforced epoxy composite. They cover most of the data required for engineering design and numerical analysis by methods like finite element method, particularly for simulating the machining process of flax fiber-reinforced epoxy composite in the ongoing works.
Funder
Natural Sciences and Engineering Research Council of Canada
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献