Effect of hybridization on crystallization behavior, mechanical properties, and toughening mechanisms in rubber-modified polypropylene flax fiber composites

Author:

Bahrami Reza12,Bagheri Reza12ORCID

Affiliation:

1. Polymeric Materials Research Group (PMRG), Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran

2. R&D Department, Parsa Polymer Sharif Co, Tehran, Iran

Abstract

Nowadays, the significance of sustainability has urged composite manufacturers to replace traditional synthetic fibers with eco-friendly natural alternatives due to their environmental and economic benefits. This work aims to fabricate hybrid polypropylene (PP) composites with short flax fibers, octene-ethylene copolymer (POE) rubber particles, and maleic anhydride-grafted polypropylene (MAPP) compatibilizer. The main goal is to gain an insight into the combined effect of toughening mechanisms induced by the short fibers and rubber particles at the crack tip and wake of composites, which is a crucial step in reaching a balance between toughness and rigidity. In this regard, a novel microscopy strategy is taken to elucidate the operating mechanisms at the crack tip and crack wake of composites. Also, differential scanning calorimetry (DSC), tensile, and Charpy impact tests were employed to investigate the effect of hybridization on the crystallization behavior, tensile, and impact properties of composites. The experimental results showed that the combined effect of encouraging matrix plastic deformation and synergistic work of toughening mechanisms at the crack tip and wake in the MAPP-modified hybrid composites containing 30% flax fibers and 10% POE rubber particles yielded an optimal improvement of 315%, 135%, and 37% in impact strength, elastic modulus, and ultimate tensile strength, respectively, over the neat PP formulation.

Funder

Parsa Polymer Sharif Company

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3