Mechanical properties and thermal stability of high-temperature (cooking temperature)-resistant PP/HDPE/POE composites

Author:

Ma Yulong12,Yang Kang13,Zhang Yi1,Wang Juheng12,Zeng Shu1,Huang Xiaoxiao1

Affiliation:

1. Guizhou Institute of Metallurgy and Chemical Engineering , Guiyang , Guizhou, 550014 , China

2. Guizhou Juxing Plastic Industry Co., Ltd. , Guiyang , Guizhou, 550014 , China

3. Guizhou Nanomaterial Engineering Center , Guiyang , Guizhou, 550014 , China

Abstract

Abstract The heterogeneous nucleation process of polypropylene (PP)/high density polyethylene (HDPE)/thermoplastic elastomer (POE) composites was realized through blending modification, and characterization techniques, including scanning electron microscopy, differential scanning calorimetry, X-ray diffraction, and dynamic mechanical analysis, were used to analyze the pattern of the impact of modified dicyclohexyl-terephthalamide (TMB-5) on the mechanical properties and thermal stability of the PP/HDPE/POE composites. The results indicated that the modified TMB-5 was advantageous to the improvement of the mechanical properties and thermal stability of the high-temperature (cooking temperature)-resistant PP/HDPE/POE composites. When the amount of added modified TMB-5 was 0.4%, the impact strength and tensile strength of the PP/HDPE/POE composites increased to 36.3 kJ/m2 and 31.7 MPa, respectively, which were, respectively, 99.5% and 8.5% higher than those of the materials prepared when the amount of added modified TMB was 0.1%. The materials had higher storage modulus in room-temperature and high-temperature environments: 2,438.2 MPa (room temperature), 1,103.9 MPa (120°C), and 1,054.8 MPa (140°C). In addition, the capability of the PP/HDPE/POE composites to crystallize was improved continuously, and the crystallinity increased considerably. At the same time, the crystallization and melting temperatures increased, β-crystal formation was induced, and glass transition temperature increased, thus effectively improving the mechanical properties and thermal stability of the high-temperature (cooking temperature)-resistant PP/HDPE/POE composites.

Publisher

Walter de Gruyter GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3