Progressive failure analysis and taguchi-based optimisation of filament-wound composite tubes subjected to internal pressure using continuum damage mechanics approach

Author:

Azizian Masoume12,Azizian Mohammad2,Abazadeh Babak2ORCID,Mohtadi-Bonab M.A.2ORCID

Affiliation:

1. Department of Mechanical Engineering, Petroleum University of Technology, Ahvaz, Iran

2. Department of Mechanical Engineering, University of Bonab, Bonab, Iran

Abstract

In this paper, a hybrid utilisation of the continuum damage mechanics approach and some novel techniques was employed for progressive failure analysis of internally pressurised filament-wound composite tubes. The constructed numerical model in Abaqus software, which is employed for prediction of functional and burst failure of the tubes, was validated with an experimental failure evaluation available in the literature. Results show the high accuracy and precision of the proposed model. Therefore, this model can be used as a cost-effective virtual failure exam prior to experimental tests or as their alternative. Then, this validated model has been used in the second part of this paper for optimisation. Due to some drawbacks of the previous optimisation methods, by using the Taguchi approach capabilities, a novel strategy is proposed for optimisation of the stacking sequence of tubes under various stress ratios with taking into account the manufacturing winding angle restrictions. Results reveal that the obtained optimal stacking sequences are asymmetric and highly dependent on calculation strategies and applied stress ratio.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3