Homogeneous dispersion and mechanical performance of aluminum reinforced with high graphene content

Author:

Yehia Hossam M1ORCID,Nouh Fathei2,El-Kady Omayma A3,Abdelwahed Khaled4,El-Bitar Taher5

Affiliation:

1. Faculty of Technology and Education, Production Technology Department, Helwan University, Cairo, Egypt

2. Faculty of Engineering Science, Mechanical Department, Sinai University, El Arish, Egypt

3. Powder Technology Department, Manufacturing Technology Institute, CMRDI, Helwan, Egypt

4. Faculty of Technology and Education, Automotive and Tractors Technology, Helwan University, Cairo, Egypt

5. Metal Working Department, CMRDI, Cairo, Egypt

Abstract

In this research, trials were performed to improve the mechanical properties of pure aluminum, maintain its lightweight, and enhance the distribution of graphene with high content up to 1.5 wt%. Aluminum composites reinforced with 10% copper, 2.5% alumina, and different ratios of graphene up to 1.5% were manufactured by powder metallurgy followed by hot rolling. The suitable sintering conditions were 565°C for 60 min under a vacuum atmosphere. The powder metallurgy method showed a general improvement in aluminum’s microstructure. An excellent distribution of the different reinforcements was achieved up to 1.5 wt% GNs due to the long mixing time in the hexane solution. However, some aggregations of the GNs layers were observed at 1.5 GNs percent. The mapping analysis detected the nano-alumina distribution. The 1 wt% GNs sample exhibit the greatest improvement in hardness with 2.4 times and yield strength increment with 76% compared to pure aluminum. Also, the wear rate decreased significantly at 1 wt% GNs percent. By conducting the hot rolling process, all results exceeded their counterparts by the powder metallurgy method up to 1.5% GNS content. The accumulated GNs at 1.5 GNs percent were spread due to slipping them over each other as a result of the rolling process. Eliminating the internal pores and improving the distribution of graphene in that sample improved its hardness, yield resistance, and mechanical wear. After the rolling process, the hardness at 1.5 wt% GNs increased from 218 HV to 389 HV, and the yield strength from 203 MPa to 280 MPa.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3