Property Evaluation of AA2014 Reinforced with Synthesized Novel Mixture Processed through Squeeze Casting Technique

Author:

Manokaran Venkatraman1ORCID,Michael Anthony Xavior1ORCID

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore 632014, India

Abstract

Aluminum alloy–graphene metal matrix composite is largely used for structural applications in the aerospace and space exploration sector. In this work, the preprocessed powder particles (AA 2014 and graphene) were used as a reinforcement material in a squeeze casting process. The powder mixture contained aluminum alloy powder 2014 with an average particle size of 25 μm and 0.5 wt% graphene nano powder (Grnp) with 10 nm (average) particle size. The powder mixture was mixed using the high-energy planetary ball milling (HEPBM) technique. The experimental results indicated that the novel mixture (AA 2014 and graphene powder) acted as a transporting agent of graphene particles, allowing them to disperse homogeneously in the stir pool in the final cast, resulting in the production of an isotropic composite material that could be considered for launch vehicle structural applications. Homogeneous dispersion of the graphene nanoparticles enhanced the interfacial bonding of 2014 matrix material, which resulted in particulate strengthening and the formation of a fine-grained microstructure in the casted composite plate. The mechanical properties of 0.5 wt% graphene-reinforced, hot-rolled composite plate was strengthened by the T6 condition. When compared to the values of unreinforced parent alloy, the ultimate tensile strength and the hardness value of the composite plate were found to be 420 MPa and 123 HRB, respectively.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3