Polyaniline doped graphene thin film to enhance the electrical conductivity in carbon fiber-reinforced composites for lightning strike mitigation

Author:

Lamichhane Pralhad1,Dhakal Dilli R1ORCID,Chaudhari Siddhesh1,Jayalath Ishan N2,Nelson Toby2,Park Chanyeop3,Yousefpour Kamran3,Blum Frank D2,Vaidyanathan Ranji1ORCID

Affiliation:

1. School of Materials Science and Engineering, Oklahoma State University – Tulsa, USA

2. Department of Chemistry, Oklahoma State University – Stillwater, USA

3. Department of Electrical and Computer Engineering, Mississippi State University, Mississippi State University, USA

Abstract

Multifunctional carbon fiber-reinforced polymer (CFRP) composites are promising structural materials for lightweight applications. However, the low conductivity in the through-thickness direction of the composites limits its applications in the fields that require the high stability of composite against lightning strikes. This work presents the study on the synergetic effect of conducting polymer, polyaniline (PANI), and graphene nanoplatelets (GNP) for increasing the electrical conductivity of CFRP composites. PANI doped GNP flexible film is fabricated with the aid of compatible polymer polyvinylpyrrolidone (PVP), and its effect on the electrical conductivity of CFRP composites has been studied. About 250% in through-thickness conductivity has improved with 11 wt% GNP as a function of the composite. The incorporation of conductive film not only increases the conductivity of the CFRP laminates but also enhances the resistance against lightning strikes. Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), three-point bending tests were used to analyze the morphology, thermal stability, and mechanical strengths of the composites. Finally, the observation of post-strike damage confirms the importance of through-thickness conductivity for mitigating the lightning strike damage.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3