Numerical Study of the Local Permeability of Noncrimp Fabrics

Author:

Nordlund Markus1,Lundstrom T. Staffan2

Affiliation:

1. Division of Fluid Mechanics, Luleå University of Technology, SE-971 87 Luleå, Sweden,

2. Division of Fluid Mechanics, Luleå University of Technology, SE-971 87 Luleå, Sweden

Abstract

Noncrimp stitched fabrics (NCFs) are often used as reinforcing materials in high-performance composite materials. Prediction models of the processing stage of the manufacturing are highly desirable in order to enhance the control of the process and enable the production of materials with higher quality. In NCFs, layers of parallel fiber bundles consisting of a large number of fibers are stitched together with other layers to form a network of interbundle channels in different directions. In earlier works, numerical simulations on unit cells had been performed in order to predict the global permeability of NCFs. It was shown that features like the thread influence the local permeability of the unit cells and therefore, the local permeability distribution of a fabric also. Furthermore, this influences the global permeability of the entire fabric. In the present paper, different geometrical features are therefore studied in order to investigate their influence on the local permeability within an NCF. The stitching process in addition to the interbundle channels, gives rise to two geometrical features, the thread which penetrates the channels and the crossing of fibers between two neighboring fiber bundles. The influences of these two features on the local permeability are studied together with variations of other geometrical parameters of the fabric. Computational Fluid Dynamics are used for the flow simulations in order to calculate the local permeability for the different unit cells. To ensure quality and trust, the numerical accuracy of the simulations is also studied. This work proves that the thread and the crossings, as well as the variations of the width and the height of the interbundle channels, have great influence on the local permeability. Prediction models therefore, have to take these features as well as geometry distortions, which influence the local permeability distribution, into account in order to make accurate predictions of the global permeability of a fabric.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3