Permeability of Unidirectional Reinforcements for RTM

Author:

Gebart B.R.1

Affiliation:

1. Swedish Institute of Composites Box 271 S-941 26 Piteå Sweden

Abstract

The permeability of an idealized unidirectional reinforcement consisting of regularly ordered, parallel fibres is derived starting from first principles (Navier-Stokes equations) both for flow along and for flow perpendicular to the fibres. First, an approx imate analytical solution for transverse flow is derived which differs from the Kozeny- Carman equation for the permeability of a porous medium [9] in that the transverse flow stops when the maximum fibre volume fraction is reached. The solution for flow along the fibres has the same form as the Kozeny-Carman equation. A comparison shows excellent agreement between a numerical solution of the full flow equations and the approximate one at medium to high fibre volume fractions ( V f > 0.35). The theoretical predictions of permeability were tested in a specially designed mould. The results from the experiments with an unsaturated polyester resin (Jotun PO-2454) and the unidirectional reinforcement did in all cases show excellent agreement with results predicted by Darcy's law (the square of the flow front position increases linearly with time if the injection pressure is kept con stant). The theoretical model could be fitted to the experimental data both for flow along the fibres and for cross flow based on data for flow along the fibres only. The fitting is ob tained by adjusting one parameter in the model, the effective fibre radius, to a value about four times larger than the real fibre radius (15 μm). Scanning electron microscopy shows that the fibres are arranged in bundles looking like cylinders with ellipsoidal cross section which may be the explanation for the effective fibre radius in the fitted model equation be ing larger than the real fibre radius.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Reference20 articles.

1. Viscoelastic Effects in the Flow of Non-Newtonian Fluids through a Porous Medium

2. The Modelling of Mold Filling in Resin Transfer Molding

3. Molnar, J.A. , L. Trevino and L.J. Lee. 1989. "Mold Filling in Structural RIM and Resin Transfer Molding," 44th Annual Conference, Composites Institute, SPI.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3