Diffuse light transmittance of glass fiber-reinforced polymer laminates for multifunctional load-bearing structures

Author:

Pascual Carlos1,de Castro Julia1,Kostro André2,Schueler Andreas2,Vassilopoulos Anastasios P1,Keller Thomas1

Affiliation:

1. Composite Construction Laboratory CCLab, Ecole Polytechnique Fédérale de Lausanne EPFL, Switzerland

2. Solar Energy and Building Physics Laboratory LESO-PB, Ecole Polytechnique Fédérale de Lausanne EPFL, Switzerland

Abstract

The diffuse light transmittance of hand lay-up glass fiber-reinforced polymer (GFRP) laminates was investigated. Spectrophotometric experiments were performed on unidirectional and cross-ply glass fiber-reinforced polymer specimens with fiber volume fractions ranging from 0.20 to 0.45. Numerical ray-tracing analysis was used to investigate the experimentally observed wavelength dependency of the diffuse light transmittance. Refractive index mismatches between glass fibers and resin and the presence of air flaws in the laminates were the major parameters increasing light diffusion. Based on the experimental data, analytical models were developed to predict the translucency (haze) of glass fiber-reinforced polymer laminates as a function of the reinforcement weight and total light transmittance. The developed models demonstrate the feasibility of conceiving glass fiber-reinforced polymer skylights with a translucency of 0.90 and a total light transmittance of 0.50 for the daylighting of energy-efficient buildings. It is also shown that laminates with translucencies of lower than 0.30 satisfy minimum total transmittances of 0.83 as required for the encapsulation of photovoltaic cells.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3