Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting

Author:

Dai YiqingORCID,Yin Yan,Lu Yundi

Abstract

Photovoltaic (PV) facilities are sustainable and promising approaches for energy harvesting, but their applications usually require adequate spaces. Road structures account for a considerable proportion of urban and suburban areas and may be feasible for incorporation with photovoltaic facilities, and thereby have attracted research interests. One solution for such applications is to take advantage of the spare ground in road facilities without traffic load, where the solar panels are mounted as their conventional applications. Such practices have been applied in medians and slopes of roads and open spaces in interchanges. Applications in accessory buildings and facilities including noise/wind barriers, parking lots, and lightings have also been reported. More efforts in existing researches have been paid to PV applications in load-bearing pavement structures, possibly because the pavement structures cover the major area of road structures. Current strategies are encapsulating PV cells by transparent coverings to different substrates to prefabricate modular PV panels in factories for onsite installation. Test road sections with such modular solar panels have been reported, where inferior cost-effectiveness and difficulties in maintenance have been evidenced, suggesting more challenges exist than expected. In order to enhance the power output of the integrated PV facilities, experiences from building-integrated PVs may be helpful, including a selection of proper PV technologies, an optimized inclination of PV panels, and mitigating the operational temperature of PV cells. Novel integrations of amorphous silicon PV cells and glass fiber reinforced polymer profiles are proposed in this research for multi-scenario applications, and their mechanical robustness was evaluated by bending experiments.

Funder

Fuzhou University

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3