Dynamic micromechanical modeling of textile composites with cohesive interface failure

Author:

Karkkainen Ryan L1,McWilliams Brandon1

Affiliation:

1. U.S. Army Research Laboratory, Aberdeen Proving Ground, MD, USA

Abstract

Micromechanical finite element modeling has been employed to investigate the failure of several compositionally varied textile composite materials under dynamic loading. A previously developed cohesive element failure model for interface strength is employed at the phase boundary between the fiber tows and the interstitial matrix to determine the effects of interface properties on the failure behavior of a 2D plain weave and 3D orthogonal weave S2 glass/BMI composite. Thus, tow pullout and separation have been included in addition to more classical micro-level failure modes such as fiber breakage and matrix microcracking. The dynamic response of a representative volume element (RVE) is determined at strain rates of 1000 and 10,000 strain/s in an explicit finite element formulation. A parametric study has investigated compositional effects on impact strengths of two weave geometries with a relatively ‘strong’ versus ‘weak’ interface property at 10,000 and 1000 strain/s in tension and compression. The successful implementation of the cohesive failure scheme into the textile RVE framework is shown, and fundamental macro-level failure cases are investigated to relate micromechanical parametric variation to consequent strength effects.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3