Dynamic fibre sliding along debonded, frictional interfaces

Author:

Yang Q.D1,Rosakis A2,Cox B.N1

Affiliation:

1. Rockwell Scientific1049 Camino Dos Rios, Thousand Oaks, CA 91360, USA

2. Department of Aeronautics, California Institute of TechnologyPasadena, CA 91125, USA

Abstract

The problem is considered of a fibre that is driven dynamically, by compression at one end, into a matrix. The fibre is not initially bonded to the matrix, so that its motion is resisted solely by friction. Prior work based on simplified models has shown that the combination of inertial effects and friction acting over long domains of the fibre–matrix interface gives rise to behaviour that is far more complex than in the well-known static loading problem. The front velocity may depart significantly from the bar wave speed and regimes of slip, slip/stick and reverse slip can exist for different material choices and loading rates. Here more realistic numerical simulations and detailed observations of dynamic displacement fields in a model push-in experiment are used to seek more complete understanding of the problem. The prior results are at least partly confirmed, especially the ability of simple shear-lag theory to predict front velocities and gross features of the deformation. Some other fundamental aspects are newly revealed, including oscillations in the interface stresses during loading; and suggestions of unstable, possibly chaotic interface conditions during unloading. Consideration of the experiments and two different orders of model suggest that the tentatively characterized chaotic phenomena may arise because of the essential nonlinearity of friction, that the shear traction changes discontinuously with the sense of the motion, rather than being associated with the details of the constitutive law that is assumed for the friction. This contrasts with recent understanding of instability and ill-posedness at interfaces loaded uniformly in time, where the nature of the assumed friction law dominates the outcome.

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3