Augmented finite-element method for arbitrary cracking and crack interaction in solids under thermo-mechanical loadings

Author:

Jung J.,Do B. C.,Yang Q. D.ORCID

Abstract

In this paper, a thermal–mechanical augmented finite-element method (TM-AFEM) has been proposed, implemented and validated for steady-state and transient, coupled thermal–mechanical analyses of complex materials with explicit consideration of arbitrary evolving cracks. The method permits the derivation of explicit, fully condensed thermal–mechanical equilibrium equations which are of mathematical exactness in the piece-wise linear sense. The method has been implemented with a 4-node quadrilateral two-dimensional (2D) element and a 4-node tetrahedron three-dimensional (3D) element. It has been demonstrated, through several numerical examples that the new TM-AFEM can provide significantly improved numerical accuracy and efficiency when dealing with crack propagation problems in 2D and 3D solids under coupled thermal–mechanical loading conditions. This article is part of the themed issue ‘Multiscale modelling of the structural integrity of composite materials’.

Funder

US Army Research Office

Florida Space Grant Consortium

Publisher

The Royal Society

Subject

General Physics and Astronomy,General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3