The effect of extrusion reprocessing cycles on the structure and properties of nano-silica reinforced polypropylene/ethylene-propylene-rubber composites

Author:

Bouaziz Amira12,khemakhem Marwa12ORCID,Massardier Valérie1,Jaziri Mohamed2

Affiliation:

1. Ingénierie des Matériaux Polymères, INSA de Lyon, France

2. Laboratoire Electrochimie et Environnement, ENIS, Tunisie

Abstract

In this study, the effect of repeated extrusion processing cycles on the structure and properties of polypropylene/ethylene-propylene-rubber/nano-silica composites was investigated. The recycling process was simulated by performing three extrusion runs, using a high shear twin screw extruder by varying the speed screw rotation (300, 800, and 1200 r/min), in order to get better understanding of the multi recycling effects. For comparative purposes, neat polypropylene/ethylene-propylene-rubber was also reprocessed under the same conditions as a reference material. From the morphological analyses performed by scanning electron microscopy, multiple extrusions were found to be not only helpful for decreasing the ethylene-propylene-rubber phase size, but also useful for ensuring a more homogenous dispersion of silica nanoparticles within the matrix. The physico-chemical properties analyses illustrate that the repeated cycles of extrusion processing provoke a decrease of the molar masses and an increase in the melt flow index. It was marked that, when going from the 1st to the 2nd extrusion cycle, and by increasing the rotation speed from 300 to 800 r/min at the same cycle, the mechanical properties were greatly enhanced. A substantial improvement of these properties was achieved after incorporating the silica nanoparticles and the maleic anhydride grafted polyethylene copolymer.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3