Affiliation:
1. Department of Aerospace Engineering, Anna University, Chennai, India
2. Department of Chemical Engineering, Materials and Environment, Università La Sapienza, Rome, Italy
Abstract
Composite laminates have low resistance under dynamic loading, particularly impact loading. A low-velocity impact on laminated composites causes various types of damage, such as delamination, fibre breakage, matrix cracking and fibre matrix interfacial debonding. Post-impact compressive strength is one of the greatest weaknesses in carbon fibre reinforced plastics laminates. After impact, due to the delaminations present in the laminates, local instability is triggered, which ultimately reduces considerably their residual strength. In this work, symmetric cross ply carbon fibre reinforced plastics laminates [(0°/90°)2]12 were subjected to falling weight impact at two different velocities, 2.5 and 3.5 m/s. Compression after impact studies showed substantial differences in failure mode between the two cases, passing from end crushing to crack propagation with higher impact energy. Acoustic emission technique was able to confirm this result and characterize the different types of failure modes during compression after impact test, in particular by frequency distribution.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献