Improvement of the electrical conductivity of carbon fiber reinforced polymer by incorporation of nanofillers and the resulting thermal and mechanical behavior

Author:

Hamdi K1,Aboura Z1,Harizi W1,Khellil K1

Affiliation:

1. Sorbonne universités, Université de Technologie de Compiègne, Laboratoire Roberval UMR CNRS 7337, France

Abstract

This work tends to characterize the effect of carbon black nanofillers on the properties of the woven carbon fiber reinforced thermoplastic polymers. First of all, composites from nanofilled Polyamide 6 resin reinforced by carbon fibers were fabricated. Scanning electron microscopy observations were performed to localize the nanoparticles and showed that particles penetrated the fiber zone. In fact, by reaching this zone, the carbon black nanofillers create a connectivity's network between fibers, which produces an easy pathway for the electrical current. It explains the noticed improvement of the electrical conductivity of the carbon black nanofilled composites. Electrical conductivity of neat matrix composite passed from 20 to 80 S/cm by adding 8 wt% of carbon black and to 140 S/cm by adding 16 wt% of the same nanofiller. The addition of nanofillers modifies the heating and cooling laws of carbon fiber reinforced polymer: the nanofilled carbon fiber reinforced polymer with 16 wt% is the most conductive so it heats less. Based on these results, the use of the composite itself as an indicator of this mechanical state might be possible. In fact, the study of the influence of a mechanical loading on the electrical properties of the composite by recording the variance of an electrical set is possible.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3