Piezoresistive response of carbon nanotube and carbon fiber/epoxy composites under cyclic loading

Author:

Hammadi Ali Faraj1,Zhao Yue2,Dalfi Hussein Kommur1ORCID

Affiliation:

1. Mechanical Department, College of Engineering, University of Wasit, Wasit, Iraq

2. University of Wollongong, School of Mechanical, Materials, Mechatronic and Biomedical Engineering, Wollongong, Australia

Abstract

Maintaining the mechanical properties and long-term operational safety is considered the main challenge for composite materials under cyclic loading. This work presents mechanical performance of tri-component composites based on multiwall carbon nanotubes (MWCNTs), carbon fibres (CFs) and epoxy resin, and their electrical conductance property for applications like strain gauges. As a result of incorporation of MWCNTs into the epoxy resin in the composite’s morphology, their electrical, mechanical and piezoresistive performance can indicate the self-sensing of carbon fiber reinforced epoxy resin matrix (CF/Epoxy matrix) composites; and thus its influence has been systematically examined. The inclusion of multiwall carbon nanotubes increased the resin bonding to the surface of the CF’s leading to an increased electrical conductivity and mechanical performances. The piezoresistive performance was significantly influenced by the amount of MWCNTs added to the resin, where the Gauge Factor (GF) with respect to the MWCNTs concentration under cyclic tensile and cyclic bending were in the range of 0.6∼1.5 and 2.5∼5.5 respectively. Moreover, the piezoresistive behaviour of the composite samples showed reasonable sensitivity, stability, and reversibility under cyclic mechanical loading, and the samples withstood more than 500 cycles of load without detectable loss in performance. The exceptional mechanical, electrical and piezoresistive performance and easy manufacturing process of the tri-component composites make them attractive for applications such as self-monitoring structural components.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3