The effect of convolutional neural network architectures on phase segmentation of composite material X-ray micrographs

Author:

Galvez-Hernandez Pedro1,Kratz James1ORCID

Affiliation:

1. The Bristol Composites Institute, University of Bristol, Bristol, UK

Abstract

Porosity severely reduces the mechanical performance of composite laminates and methods for automatic segmentation of void phases are growing. This study investigates porosity in composite materials that take the form of interlaminar voids and dry tow areas. Deep Learning was used for the segmentation of X-ray micrographs via the implementation of eight state-of-the-art Convolutional Neural Network (CNN) architectures trained with data sets containing twenty-five, fifty, and one-hundred images. The combination of hyperparameters providing the highest accuracy for each architecture and training set size was achieved through the optimisation of six relevant hyperparameters, including the cut-off probability applied to output probability maps. Additionally, the properties of the CNN architectures ( e.g., layer typology, connections, density…) were found to play a determining role, not only in the segmentation results but also in the associated computing effort. U-Net and FCDenseNet outperformed the FCN-8s, FCN-16, SegNet, LinkNet, ResNet18 and Xception CNN architectures. However, the CNNs generally outperformed the standard thresholding approaches, especially in sub-volumes containing low porosity (1.07%) where the influence on strength is very sensitive in high-performance composites. In low porosity samples, U-Net and FCDenseNet consistently segmented voids to 85% + accuracy, whereas thresholding was only half as accurate, at around 40%. The results provide a strong motivation to replace thresholding as a segmentation method for composite X-ray micrographs. In terms of efficiency, the reduced complexity of the U-Net network allowed for an average reduction of the training time (−36%) and prediction time (−17%) when compared to FCDenseNet.

Funder

Engineering and Physical Sciences Research Council

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3