Microscopy cell nuclei segmentation with enhanced U-Net

Author:

Long FeixiaoORCID

Abstract

Abstract Background Cell nuclei segmentation is a fundamental task in microscopy image analysis, based on which multiple biological related analysis can be performed. Although deep learning (DL) based techniques have achieved state-of-the-art performances in image segmentation tasks, these methods are usually complex and require support of powerful computing resources. In addition, it is impractical to allocate advanced computing resources to each dark- or bright-field microscopy, which is widely employed in vast clinical institutions, considering the cost of medical exams. Thus, it is essential to develop accurate DL based segmentation algorithms working with resources-constraint computing. Results An enhanced, light-weighted U-Net (called U-Net+) with modified encoded branch is proposed to potentially work with low-resources computing. Through strictly controlled experiments, the average IOU and precision of U-Net+ predictions are confirmed to outperform other prevalent competing methods with 1.0% to 3.0% gain on the first stage test set of 2018 Kaggle Data Science Bowl cell nuclei segmentation contest with shorter inference time. Conclusions Our results preliminarily demonstrate the potential of proposed U-Net+ in correctly spotting microscopy cell nuclei with resources-constraint computing.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Computer Science Applications,Molecular Biology,Biochemistry,Structural Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3