Damage-tolerant composite design principles for aircraft components under fatigue service loading using multi-scale progressive failure analysis

Author:

DorMohammdi Saber1,Godines Cody1,Abdi Frank1,Huang Dade1,Repupilli Massimiliano1,Minnetyan Levon2

Affiliation:

1. AlphaSTAR Corporation, USA

2. Clarkson University, USA

Abstract

Virtual testing has lately gained widespread acceptance among scientists as a simple, accurate, and reproducible method to determine the mechanical properties of heterogeneous microstructures, early in the production process. As a result of the rapid expansion of the use of composites in aerospace design, virtual testing techniques are, in fact, deemed extremely useful to eliminate unnecessary tests and to reduce cost and time associated with generating allowables for lengthy lifing analyses of structures. Leveraging on a limited set of experimental data, a Progressive Failure Analysis can accurately predict the life and safety of a component/assembly, simply tapping on the physics of its micro-/macro- mechanics material properties, manufacturing processes, and service environments. The robust methodology is showcased using blind predictions of fatigue stiffness degradation and residual strength in tension and compression after fatigue compared with test data from Lockheed Martin Aeronautics and Air Force Research Laboratory). The multi-scale progressive failure analysis methodology in the GENOA software considers uncertainties and defects and evaluated the damage and fracture evolution of three IM7-977-3 laminated composite layups at room temperature. The onset and growth of composite damage was predicted and compared with X-ray CT. After blind predictions, recalibrations were performed with knowledge of the test data using the same set of inputs for all layups and simulations. Damage and fracture mechanism evolution/tracking throughout the cyclic loading is achieved by an integrated multi-scale progressive failure analysis extended FEM solution: (a) damage tracking predicts percentage contributing translaminar and interlaminar failure type, initiation, propagation, crack growth path, and observed shift in failure modes, and (b) fracture mechanics (VCCT, DCZM) predicts crack growth (Crack Tip Energy Release Rate vs. Crack Length), and delamination. The predictive methodology is verified using a building block validation strategy that uses: (a) composite material characterization and qualification (MCQ) software, and (b) the GENOA multi-scale progressive failure analysis fatigue life, stiffness degradation, and post-fatigue strength predictions for open-hole specimens under tension/compression at RTD. The unidirectional tension, compression, and in-plane shear lamina properties supplied by Lockheed Martin Aeronautics and the Air Force Research Laboratory (based on the D3039, D638, D3518 tests) were used by MCQ to reverse engineer effective fiber and matrix static and fatigue properties for the IM7-977-3 material system. The use of constituent properties identified the root cause problem for composite failure and enabled the detection of damage at the micro-scale of the material where damage is incepted. For all three case studies (namely, layups [0/45/90/−45]2s, [+60, 0, −60]3s, and [+30, +60, 90, −60, −30]2s), the blind predictions on the fatigue stiffness degradation and residual strength of the open-hole coupon in tension/compression under cyclic loading (with R = 0.1) at RTD were evaluated using a FE mesh (made of 2k shell elements), in which only one shell element, containing all plies, was employed through the thickness. The results of all analyses correlated very well with the tests, including the damage micro-graphs generated during the cyclic loading.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3