Abstract
The stiffness degradation of hybrid carbon/glass fibre composites are investigated under cyclic loading in three-point bending. The composites are compared to toughened composites interlayered with PA 6,6 nanofibre (veil) and a matrix toughened with 5% rubber particulate. With the incorporation of veil into the hybridised composite, the hybrid interface experienced extensive localised delamination, due to crack deflection, causing longitudinal cracking between the fibre and veil interface. It is observed that delamination was redirected and reduced by veil interlayering, due to crack bridging as the cracks propagated. The carbon fibre composites toughened by rubber particulate showed similar stiffness retention to carbon fibre after 1,000,000 cycles. The veil interlayering within carbon fibre improved the stiffness retention by 66.87% for the flexural modulus, compared to carbon fibre and rubber toughened carbon fibre laminates. In both glass and carbon fibre samples, the stiffness retention with veil showed a 10-fold increase in fatigue life, compared with untoughened controls. It is observed from the failure mechanics that veil acted as a randomly orientated fibre layer, rather than a matrix toughener.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献