A Novel Technique for Penetrator Velocity Measurement and Damage Identification in Ballistic Penetration Experiments

Author:

Espinosa Horacio D.1,Lu Hung-Cheng1,Xu Yueping1

Affiliation:

1. School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN 47907-1282

Abstract

A novel experimental configuration that can simultaneously record projectile velocity histories and target back surface out-of-plane motion in penetration experiments has been developed. The technique was used to investigate failure mechanisms during ballistic impact of an S-2 glass fiber woven composite with 60% fiber volume fraction. Microscopy studies performed on recovered samples clearly show interply delamination, fiber breakage, ply inelasticity, and fiber kinking as the major failure modes in these composites. Recorded penetrator velocity histories indicate the failure process is rate dependent. Three well defined regions with different failure zones are observed in the laminate. In a region at the rear of the target plate, Region A, extensive delamination between plies is seen leading to bulge formation. Damage is observed in front of the penetrator with substantial fiber shearing. In a middle region, Region B, tensile fiber failure and large fiber deflection, to accommodate the lateral expansion generated by the steel penetrator, are observed. At the projectile entrance, Region C, fiber microfracture followed by fiber tensile failure is believed to be the failure mode in this region. Noticeable delamination is also produced in plies close to the front specimen surface. Two major fiber failure modes are observed in the micrographs, fiber kinking and cracking. Well defined kink bands are seen in Regions B and C on plies with fibers oriented perpendicular to the penetration direction. The formation of kink bands appears to be the result of compressive failure due to lateral motion of the plies away from the advancing steel penetrator.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3