The effect of TiO2 nanotubes reinforcement on the mechanical properties and wear resistance of silica micro-filled dental composites

Author:

Mirjalili Abolfazl1ORCID,Zamanian Ali1,Hadavi Seyed Mohammad Mahdi2

Affiliation:

1. Biomaterials Research Group, Nanotechnology and Advanced Materials Department, Materials and Energy Research Center (MERC), Iran

2. Department of Materials Engineering, Tarbiat Modares University, Iran

Abstract

One of the most important aspects of dental resin composites is the ability to improve mechanical properties by adding reinforcing filler particles. TiO2 nanotubes are expected to improve the physical and mechanical properties of silica micro-filled dental composite. Therefore, TiO2 nanotubes were synthesized using an alkaline hydrothermal process and then functionalized with 3-methacryloxypropyl-trimethoxysilane. TiO2 nanotubes were characterized by scanning and transmission electron microscopies, X-ray diffraction and Fourier transform infrared spectroscopy. Different quantities of TiO2 nanotubes and silica microparticles were reinforced in bisphenol A-glycidyl methacrylate (Bis-GMA) and tri-ethylene glycol dimethacrylate to prepare dental composite samples. Thereafter, the flexural strength and modulus, compressive strength, degree of conversion of monomers, wear resistance and water sorption were utlized to examine the prepared composites. The flexural strength and wear resistance of composites with 3 wt% TiO2 nanotubes significantly increased in comparison with other composites. On the other hand, due to the stability of composite, the water sorption was decreased. Therefore, TiO2 nanotubes reinforcement could be a promising solution for the improvement of mechanical properties in dental composites.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3