Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films

Author:

De Silva RT1,Pasbakhsh Pooria1,Goh KL2,Chai S-P3,Chen J24

Affiliation:

1. Mechanical Engineering Discipline, School of Engineering, Monash University, Malaysia

2. School of Mechanical and Systems Engineering, Newcastle University, UK

3. Chemical Engineering Discipline, School of Engineering, Monash University, Malaysia

4. Arthritis Research UK (ARUK) Tissue Engineering Centre, Newcastle University, UK

Abstract

Poly (lactic acid) (PLA)/natural halloysite nanotubes (HNTs) films were prepared by solution casting method to investigate their properties for packaging applications. Tensile test results revealed that the maximum tensile elastic modulus (1.40 ± 0.05 GPa) and tensile strength (52.75 ± 1.80 MPa) were achieved at 5 w/w % of HNTs (in a range of 0–10 w/w % HNT concentrations). A nanoindentation test was performed to confirm the reinforcing effect of HNTs. Analysis of electron micrographs of the fracture surfaces suggested that the reinforcing mechanism was subjected to the interfacial interaction between HNTs and PLA. Infrared spectra revealed that the end hydroxyl groups of PLA chemically interacted with HNTs’ outer surface siloxane groups via hydrogen bonding. In addition, the contact angle test and thermogravimetric analysis were used to investigate the surface wettability and thermal stability of the PLA/HNT films, respectively.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3