Prediction of Cryogen Leak Rate through Damaged Composite Laminates

Author:

Peddiraju Pravin1,Noh Jae1,Whitcomb John1,Lagoudas Dimitris C.2

Affiliation:

1. Department of Aerospace Engineering, Texas A&M University College Station, TX 77854-3141, USA

2. Department of Aerospace Engineering, Texas A&M University College Station, TX 77854-3141, USA,

Abstract

The structural weight of a cryogenic propellant tank for reusable launch vehicles (RLV) can be effectively reduced by the use of advanced composite materials. However, microscopic damage such as transverse matrix cracks (TMC) and delaminations are prone to develop in composites well below the load levels that would result in mechanical failure. This microscopic damage leads to a leakage path for the fuel. The leakage is influenced by many factors, including pressure gradients, microcrack density, connectivity of the cracks, residual stresses from manufacture, service-induced stresses from thermal and mechanical loads, and composite stacking sequence. It is expected that there is a direct relationship between leakage and damage opening but the connectivity of matrix cracks is also a major factor affecting the leakage. In this article, the leakage rate through the damage network is discussed based on earlier studies for the opening of damage paths due to TMC and delamination, including the TMC intersection area. In order to examine the leakage process, numerical simulations are performed using the computational fluid dynamics software (FLUENT) and the effective conductance of the leakage paths is estimated. A simplified model is also developed to predict the effective conductance. The flow resistance in the TMC and the resistance of the TMC intersection area are accounted for in the calculation of the effective conductance of the leakage path through the entire laminate using the simplified model. Comparisons between the numerical solution for a five-ply composite with interconnected leakage paths and the prediction of the simplified model are presented for gaseous hydrogen flow through the thickness of the composite at room and cryogenic temperatures.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3