A review on gas permeability of polymer matrix composites for cryogenic applications

Author:

Saha Shuvam1ORCID,Sullivan Rani W.1ORCID

Affiliation:

1. Department of Aerospace Engineering, Mississippi State University, Mississippi, MS, USA

Abstract

Fiber-reinforced polymer matrix composites are increasingly considered for lightweight cryogenic pressure vessels due to their excellent combination of tailorability, specific mechanical properties, and relatively low coefficients of thermal expansion. However, significant challenges must be overcome to fully utilize PMCs for cryogenic fuel tanks in terms of transverse microcracking and subsequent permeation of cryogenic fuel. Gas permeation and microcrack densities of cryogenically cycled composites are highly influenced by their layup, ply thickness, load case, and manufacturing defects like voids and resin rich zones. There has been a significant amount of research on measuring gas permeation of composites fatigued under pure thermal or uniaxial thermo-mechanical stresses. However, results demonstrate that the gas permeability should be measured under biaxial thermo-mechanical stresses to properly gauge the leakage characteristics of damaged composites. This paper summarizes the results from over a hundred papers on the key parameters that influence the gas permeability of composites, appropriate testing methods to cycle composites for permeability measurement, methods to limit the evolution of transverse microcracks, and materials traditionally used for the fabrication of all-composite cryogenic fuel tanks. Thin plies and nanofiller-toughening of the matrix have been shown to provide significant improvements in transverse microcrack suppression within cryogenically cycled composites.

Funder

Langley Research Center

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3