A New Ultimate Strength Model of Notched Composite Laminates — Including the Effects of Matrix Failure

Author:

Liu C.J.1,Nijhof A.H.J.2,Ernst L.J.2,Marissen R.3

Affiliation:

1. Laboratory for Engineering Mechanics, TM-OCP, Delft University of Technology Mekelweg 2, 2628CD Delft, The Netherlands,

2. Laboratory for Engineering Mechanics, TM-OCP, Delft University of Technology Mekelweg 2, 2628CD Delft, The Netherlands

3. Faculty of Aerospace Engineering, Delft University of Technology Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract

A new ultimate strength model is developed to predict the final failure, with the influence of matrix failure, of notched cross-ply laminates. The present model is based on the estimation of the local stresses and the redistribution of the local stresses in the critical damage zones around the notches. The new ultimate strength model can be stated as: when the local stresses in the critical-load-carrying elements reach their failure strength, the critical-load-carrying element will fail and the ultimate failure will occur. In order to estimate the local stress concentration in the critical damage zones, a method is developed and applied to decompose the local stress concentration into several parts, e.g., the geometrical contribution, the stacking-ratio contribution, and the damage contribution. Combined with a single numerical simulation for a notched laminate, the damage-dependent stress concentration of the laminate can be established for different notches and it is then utilized to predict the ultimate strength of notched laminates with different notches. The applications of this method show that the model prediction agrees with the experimental observations satisfactorily.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3