Investigations on Crack Propagation and Strain Energy Release Rate in Notched Woven-Ply Thermoplastic Laminates at High-Temperature

Author:

Chabchoub M.12,Vieille B.1,Beyaoui M.2,Taktak M.2,Haddar M.2,Taleb L.1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Applied Sciences of Rouen, Groupe de Physique des Matériaux UMR 6634 CNRS, 76801 St Etienne du Rouvray, France

2. Department of Mechanical Engineering, National School of Engineers of Sfax, Laboratory of Mechanics, Modelling and Production, Route Soukra, 3038 Sfax, Tunisie

Abstract

The strain energy release rate [Formula: see text] is of prime importance in composite materials fracture mechanics. In order to experimentally and numerically evaluate this parameter in the case of quasi-isotropic and angle-ply (AP) woven-ply thermoplastic (TP) laminates, single edge notched (SEN) specimens have been subjected to monotonic tensile loading at [Formula: see text] when the toughness and the viscous behavior of the (TP) matrix are exacerbated. From the simulation standpoint, a particular attention was paid to the type of meshing as well as its refinement in the vicinity of the crack tip where the triaxiality rate leads to significant stress concentrations. For this purpose, a linear spectral viscoelastic and a generalized Norton-type viscoplastic models have been used. A comparison between two types of meshing (radiant and concentric) has been conducted. Both types of meshing allow us to define crowns in order to represent the surface of the integration ring around the crack tip. These crowns are necessary to evaluate the strain energy release rate [Formula: see text] in opening mode using [Formula: see text]-integral computation. Both overstress and overstrain profiles near the crack tip were investigated and validated using theoretical stress fields derived from the linear elastic fracture mechanics (LEFM) framework and overstrain fields obtained from digital image correlation (DIC) to verify the model’s ability to provide accurate mechanical fields at singularity zones.

Publisher

World Scientific Pub Co Pte Lt

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3