Affiliation:
1. ONERA/DMSC, Châtillon cedex, France
Abstract
This paper presents a multiscale hybrid approach for predicting damage and failure of laminated composite structures based on the thermo-mechanical properties (stress/strain behaviour and strength) of the unidirectional plies. This kind of approach is thus predictive for different stacking sequences. The approach introduces viscosity of the matrix in order to obtain an accurate description of the mesoscopic behaviour, especially the non-linearity under shear loading. The failure criterion used is based on physical principles and introduces micromechanical aspects (such as the effect of the local debonding on the non-linear failure behaviour) at the mesoscopic scale. The main improvements, over those proposed in the second world-wide failure exercise, are related to (1) the evolution and effects of the mesoscopic cracks and (2) the coupling between those cracks and delamination (inter-ply damage). This approach has been implemented in an implicit finite element code in order to predict the strength of composite structures, exhibiting different levels of complexity (unnotched plates, open-hole plates) and subjected to complex loadings (membrane or bending loadings). All the 13 Test Cases of the third world-wide failure exercise have been solved.
Subject
Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献