Damage-caused residual curvatures in symmetric laminates

Author:

Pupurs Andrejs1,Varna Janis1

Affiliation:

1. Riga Technical University

Abstract

Abstract Thermo-mechanical response of [90n/0m]s carbon/epoxy and glass/epoxy cross-ply laminates in 4-point bending is analyzed experimentally and analytically. Intralaminar cracks in surface 90°-plies and local delaminations introduced in one of the 90°-plies at large deflections reduce the laminate bending stiffness and make the laminate asymmetric due to differences in the damage state in the layers. The latter leads to residual thermal curvature that increases with intralaminar crack density and with growing local delaminations. In the present study optical microscopy was used for crack density quantification. It was also found experimentally that small local delaminations develop in the initial stage of damage evolution and under increasing load they grow rapidly from the existing and newly created crack tips. The effect of damage on residual curvature and the bending stiffness was analyzed using an analytical method, where the concept of the effective stiffness of damaged ply is used in the classical laminate theory. Analytical results were validated with a 3-D FEM simulation of the damaged laminate in a 4-point bending test. It is shown that the analytical approach gives an accurate description of experimental results regarding two independent sets of data: the residual curvature; and the laminate bending stiffness with evolving micro-damage. It also renders a better insight in the mechanics of the phenomena and allows estimation of the extent of local delaminations that is difficult to measure in tests.

Publisher

Research Square Platform LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3