Investigation of the morphology and properties of the polypropylene/low-density polyethylene/wood powder and the maleic anhydride grafted polypropylene/low-density polyethylene/wood powder polymer blend composites

Author:

Dikobe DG1,Luyt AS2

Affiliation:

1. Department of Chemistry, University of the Free State (Qwaqwa Campus), South Africa

2. Center for Advanced Materials, Qatar University, Qatar

Abstract

The properties of polypropylene/low-density polyethylene and maleic anhydride grafted polypropylene/low-density polyethylene blends, and their wood powder composites are compared in this study. The blends contained equal amounts of polymers, and the wood powder was added into the blends to form polypropylene/low-density polyethylene/wood powder and maleic anhydride grafted polypropylene/low-density polyethylene/wood powder ternary systems. The Fourier-transform infrared analysis of the blends and composites did not provide any evidence of significant interactions between the different components, although the rest of the results clearly showed that maleic anhydride grafted polypropylene and wood powder significantly interacted, and that there was some interaction between maleic anhydride grafted polypropylene and low-density polyethylene. The differential scanning calorimetry and dynamic mechanical analysis results confirmed the immiscibility of polypropylene and low-density polyethylene, and polypropylene and maleic anhydride grafted polypropylene, and indicated that wood powder was distributed in both the low-density polyethylene and polypropylene phases in the polypropylene/low-density polyethylene blend, but most probably only in the maleic anhydride grafted polypropylene phase in the maleic anhydride grafted polypropylene/low-density polyethylene blend. The polypropylene/low-density polyethylene and maleic anhydride grafted polypropylene/low-density polyethylene blends were found to be more thermally stable than the neat polymers, while the presence of wood powder in both polymer blends further increased the thermal stability of the polymers. The blends and composites with maleic anhydride grafted polypropylene showed higher tensile modulus values and lower elongation at break values than the composites with polypropylene, while the stress at break values of the two sets of samples were comparable.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3