Valorization of Potential Post-Consumer Polyethylene (PE) Plastics Waste and Ethiopian Indigenous Highland Bamboo (EHB) for Wood Plastic Composite (WPC): Experimental Evaluation and Characterization

Author:

Ayana Keresa DefaORCID,De Angelis Marco,Schmidt GoranORCID,Krause AndreasORCID,Ali Abubeker Yimam

Abstract

The best approaches to minimizing resource scarcity, removing valuable waste streams, and re-establishing a circular economic chain of recycled thermoplastics are to cascade them into product life cycles and their valorization combined with sustainable raw materials. As one part of this goal, WPC was formulated from three recycled PE plastic wastes: linear low-density polyethylene (LLDPE), medium-density polyethylene (MDPE), high-density polyethylene (HDPE), and underutilized EHB. The chemical composition of EHD, chemical structure, crystallinity, melting and crystallization points, residual metal additives, and polycyclic aromatic hydrocarbons (PAHs) of recycled PE were investigated using standard chromatographic and spectroscopic methods such as HPAEC-UV/VIS, FTIR, DSC, GC/MSD, and XPS. The properties of WPC formulations from different compositions of bamboo particles (BP) as dispersed phase, individual recycled PE plastics, and equal melt blend (EM) as polymer matrix were investigated extensively and measured with a known standard. These comprised tensile strength (TS), modulus of elasticity (TM), flexural strength (FS), modulus of rupture (FM), and unnotched impact strength (UIS). It also included the effect of various alkaline surface treatment ranges on the interface surface interaction. The results show improved mechanical properties for all blending ratios of surface-treated BP, which resulted from better encapsulation in the polymer matrix. Despite its inherent immiscibility, WPC formulation from equal melt blending revealed unusual properties compared to separate phase blends, which is attributed to thermally induced cross-linking. This implies that melt blending of the weakest and cheapest recycled LLDPE with relatively cheap recycled MDPE and HDPE improves the properties of the blend, particularly toughness, while simultaneously retaining some of their properties.

Publisher

MDPI AG

Subject

Mechanics of Materials,Biomaterials,Civil and Structural Engineering,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3