Gate optimization for resin transfer molding in dual-scale porous media: Numerical simulation and experiment measurement

Author:

Oya Yutaka1ORCID,Matsumiya Tsubasa1,Ito Akira1,Matsuzaki Ryosuke23ORCID,Okabe Tomonaga14

Affiliation:

1. Department of Aerospace Engineering, Tohoku University, Japan

2. Department of Mechanical Engineering, Tokyo University of Science, Japan

3. Institute of Fluid Science, Tohoku University, Japan

4. Department of Materials Science and Engineering, University of Washington, USA

Abstract

For resin transfer molding in a woven fabric, this study developed a novel framework for optimization by combining a multi-objective genetic algorithm and mold-filling simulation including a void-formation model, which gives us not only the spatial distribution of the mesoscopic and microscopic voids but also the correlations between molding characteristics such as fill time, total amount of void, weld line, and wasted resin. Our experiment observation of one-point radial injection successfully captured the anisotropic distribution of mesoscopic voids, which qualitatively validates the simulated result. As a result of multi-objective optimization for an arrangement of two injection positions, we found the trade-off relations of weld line with the other characteristics, which also have positive correlation with each other. Furthermore, visualization techniques such as self-organizing maps and parallel coordinate maps extracted the design rule of the arrangement. For example, a diagonal gate arrangement with an appropriate distance is required for reducing the both total amount of voids, fill time, and wasted resin; however, the total area of the weld line becomes relatively large. Our framework and the knowledge obtained from this study will enable us to determine the appropriate mold design for resin transfer molding.

Publisher

SAGE Publications

Subject

Materials Chemistry,Mechanical Engineering,Mechanics of Materials,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3